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Abstract—This paper presents the development of a hyper-
spectral imaging system for the classification of H&E-stained
histological slides. The system was developed to be coupled to
a conventional microscope, with software dedicated to control
the instrumentation, to show a colorful live image from an RGB
camera, and to acquire the hyperspectral imaging using a liquid
crystal tunable filter (LCTF). Hyperspectral images of H&E-
stained histological slides undergoing photodynamic therapy were
classified with four machine learning algorithms to find damaged
tissues (crust). The classification results were presented and show
that this technique is promising to classify histological tissue
regions.

Index Terms—Hyperspectral Imaging, Histological Slides, Pho-
todynamic Therapy, Animal Model, Tissue Classification

I. INTRODUCTION

Hyperspectral imaging (HSI) is a technique to image an
object in different wavelengths in order to acquire the spectral
information for each pixel. This technique has been extensively
used in digital pathology, tissue conditions diagnosis, and for
surgery visualization [1–3]. In digital pathology, interesting
works have been published in the literature for the detection
of neoplastic tissues using HSI, like squamous neoplasia [4],
breast cancer [5], colon ovarian cancer [6], and melanoma [7].
Also some studies have also addressed the digital staining of
histology slides using hyperspectral imaging [8, 9].

Although there are important works studying skin tissue
classification, there is a considerable gap in the published
studies for tissue classification in skin histology. This work
is dedicated to study the use of different artificial intelligence
algorithms in order to classify different tissue regions in H&E
stained slides. An interesting tissue area analysed here was the
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skin damaged tissue (crust) which is of important relevance in
the research area of skin cancer therapies like photodynamic
therapy (PDT).

II. MATERIAL AND METHOD

A. Hardware and Software

The hyperspectral system was developed to connect to
most of the commercial microscopes available. In this study,
the equipment was installed in the trinocular output of an
Eclipse Ti-S (Nikon, Japan) but can also be established in the
camera output or even in the ocular outcome. The Eclipse Ti-
S has a 30 W halogen lamp to illuminate the sample, and
the transmitted light is then collimated by the microscope
optics and enters the hyperspectral system. The developed
hyperspectral system comprises a liquid crystal tunable filter
(LCTF, PerkinElmer, USA), which is the spectral component,
and two digital cameras, an RGB (DCC-1645C, Thorlabs,
USA), to preserve the regular usage of a microscope to find the
sample and to focus its objective lenses, and a monochromatic
one (DCC-1545M, Thorlabs, USA). Figure 1 presents the
system schematic drawing.

The LCTF can filter light in different wavelengths from the
visible electromagnetic spectrum to the near-infrared (400 nm
to 720 nm) based on light polarization. Changing the equip-
ment’s input voltage causes the concatenated liquid crystals to
modify their refractive index. These changes can filter light
in a specific spectral region, acting as a band-pass filter with
a well-defined central wavelength. This filtering defines the
spectral range that can pass through LCTF and reaches the
monochromatic camera sensor.

The control software was developed and connected to the
hyperspectral system to capture the images, control both
cameras and change the filter’s wavelengths. Both cameras
are fully controllable, including the pixel clock, frame rate,
exposure time, and the capability of displaying real-time
images to the user.



Fig. 1. Schematic drawing of the hyperspectral system (left) and the optical
microscope (right). The hyperspectral system is composed by two digital
cameras (monochromatic and RGB), the spectral component (LCTF) and a
30% mirror.

While the monochromatic camera function is to capture the
hyperspectral images that pass through the filter, the RGB
camera is responsible for displaying the colored images in real-
time during the process, and being also used to capture images
for further processing and comparison with the hyperspectral
images.

The control algorithm and the graphical user interface (GUI)
were developed on LabVIEW (National Instruments, USA)
platform, considering its powerful capabilities to connect dif-
ferent hardwares and its fast time-to-development of a complex
GUI. The user interface is composed of two picture boxes
that display the real-time images from both cameras, in which
their parameters can be controlled and changed during the
algorithm’s execution. Both cameras have the possibility to
save images on a chosen folder.

In the automated routine, both LCTF and the monochro-
matic camera are controlled to acquire specific wavelengths
with intervals and steps that can be determined by the user.
During this process, the user can choose whereas the cam-
era exposure time will be maintained or if it will change
the wavelength accordingly to take into account the small
LCTF transmittance and the small lamp emission towards
smaller wavelengths. All these images and exposure times are
recorded.

B. Animal Model

This study had approval from the Animal Use Ethics
Committee of the São Carlos Institute of Physics at the
University of São Paulo. The experiments were carried out
in a male Wistar rat with 300 g on average. Photodynamic
therapy (PDT) was performed in the animal dorsum using a
commercial system (Lince, MMOptics, Brazil) at an irradiance
of 40 mW/cm2 until a fluence of 30 J/cm2. The irradiance
protocol was performed after 2 h of δ-aminolevulinic acid
(ALA) incubation in rat skin. The histological slide was

obtained from biopsies collected 72 h after PDT, stained with
hematoxylin and eosin (H&E).

C. Image Processing Algorithms

A Python algorithm was developed using the Spyder IDE to
process the images and use four different supervised machine
learning models. The first model was the K-Nearest Neighbors,
which is the simplest and can be used for comparison with
the others. The second and third models were the Support
Vector Machine (SVM) with linear kernel and RBF kernel,
respectively. SVM is a widely used algorithm in hyperspectral
image classification and performs very well in this technique
[1–3]. The fourth model was Random Forest (RF), which
is also commonly used and has a low risk of overfitting
[1, 3]. The scikit-learn library was used because it has all
the algorithms implemented and it is open source [10]. The
code used the classes and functions defined in the library
for the algorithms described above, and part of the algorithm
was related to image acquisition, preparation, and data and
visualization were written by the author.

The monochromatic images (w× h pixels) acquired by the
system described above were loaded and grouped in order
to create a hyperspectral image, with the third dimension
size equals to the number of acquired wavelengths (d). An
algorithm that uses some functions and classes of OpenCV
library (Open Source Computer Vision Library) was written
for selection of the regions of the image corresponding to
each tissue: epidermis, dermis, and damaged tissue (crust), in
addition to the glass region of the lamina in which there was no
tissue. This procedure was performed because the algorithms
are supervised and use this information for the training process
and for the calculation of accuracy. Then, the image was
normalized by the mean pixels intensity that corresponds to
the glass region so that the transmittance of each tissue was
obtained, considering the glass of the microscope slide as a
reference. This was done to all components of the image,
therefore each wavelength has been corrected, preventing from
differences in the acquisition parameters from the camera.
There was applied another normalization so that the pixels
presented values between 0 and 1. This was done because
some machine learning models perform better if the input data
is in the range between 0 and 1.

First the image were reshaped from h×w×d to h ∗w×d.
Thus, each region of interest (ROI) selected before was taken
from the h ∗ w × d array. From the selected data, 90% was
applied as a training set and 10% as the test set. After data
preparation, the training set was used as an input to the training
of the four models. Then, the entire image was used as input
for the algorithm to classify each tissue. The array resulted
from classification was reshaped again to the dimensions h×
w × d, and there was applied an artificial coloration to the
image to identify each classified region.

Each machine learning model from the scikit-learn library
has a built-in function that calculates the average accuracy. The
test set was used as the input of this function to calculate this
score. There was also a post-processing phase which consisted



of applying a median filter with kernel size equals 31. This
kind of filter was used in order to increase the homogeneity
of the tissue.

III. RESULTS

A. Hardware and Software

The image acquisition and GUI software were developed
on LabVIEW, based on Varispec (PerkinElmer, USA) and
Thorlab‘s pre-built functions (SubVI’s). A .NET extension file
was used to control both cameras, while the LCTF’s serial
communications were designed using the LabVIEW VISA
application.

The software starts with the initialization of both cameras
and their serial number loading. A serial identification func-
tion is then called to recognize the cameras, allocating their
reference ID to its main loop. The two cameras main loops
are responsible for displaying the real-time images and, in the
case of monochromatic camera, conducting the camera and
the LCTF to the hyperspectral imaging loop. Each camera
loop is executed in parallel, reading the camera’s sensors and
displaying the image for the user.

When the user enters the wavelength interval, the incre-
mental step and starts the automated image capture routine,
the LCTF is activated, receiving the parameters as an array
input and being able to filter light through in the wavelength
interval. The monochromatic camera saves the filtered image
automatically after every filter change while also updating its
exposure time based on an array input.

B. Image Processing Algorithms

After data extraction, the images corresponding to 470 nm,
570 nm, and 630 nm were grouped to form the RGB image
(figure 2).

Fig. 2. RGB image of a H&E stained slide of a rat skin submitted to
photodynamic therapy (PDT). It is possible to see the epidermis tissue in
the middle of the image (purple), the dermis on the left (light purple), and the
damaged tissue on the right (darker region). The image was composed with
the hyperspectral system using the 470 nm, 570 nm, and 630 nm components.

For the training process, 0.51% of the pixels of the image
was used, which corresponded to 6701 pixels. After processing
and classifying the hyperspectral image, the Figure 3 was
generated, which presents the results of each of the four
models. The colors represent the algorithm classifications: dark
red for the epidermis, green indicates the dermis classification,
blue is the damaged tissue (crust), and yellow the slide glass
region.

Fig. 3. Resulting image after classification by each model: (a) KNN (b) Linear
SVM (c) RBF SVM (d) Random Forest. In the image, each color represents
an algorithm classification: green for dermis, dark red for epidermis, yellow
for blank region (slide glass), and blue for the damaged region (crust).

Then the test set was used as the input for the function that
calculates the average accuracy. The results were generated for
each model (Table I).

TABLE I
ACCURACY FOR EACH OF THE MODELS FOR THE TEST SET

Score KNN Linear SVM RBF SVM RF
Accuracy (%) 96.31 91.79 96.55 96.64

Figure 4 shows the resulting image after applying the
median filter, and Table II presents the corresponding score
for each model after this post-processing.

TABLE II
ACCURACY FOR EACH OF THE MODELS FOR THE TEST SET AFTER MEDIAN

FILTER APPLICATION

Score KNN Linear SVM RBF SVM RF
Accuracy (%) 98.68 96.37 98.84 98.93

The results indicate that these four models are prominent
for classifications of histological slides of H&E-stained tissues.
The post-processing increased the accuracy and maybe a good
technique to correct the pixels classified incorrectly due to the
cell’s nuclei.



Fig. 4. Resulting classified image after median filter with 31 pixels of kernel
size, for each method applied: (a) KNN (b) Linear SVM (c) RBF SVM (d)
Random Forest. In the image, each color represents an algorithm classification:
green for dermis, dark red for epidermis, yellow for blank region (slide glass),
and blue for the damaged region (crust).

IV. CONCLUSIONS

In this study, a hyperspectral system is described and used
to image the H&E-stained slide of a rat skin submitted to
ALA-mediated photodynamic therapy. Four different algo-
rithms were implemented in this study, which results show
that this techniques are promising in the classification of rat
skin regions. In particular, this technique is promising for
the classification of damaged tissue (crust), which is highly
important to quantify the necrotic area (or damaged tissue) in
treatment studies like photodynamic therapy.
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